
Secure Coding.
Practical steps to defend your web apps.

Copyright SANS Institute
Author Retains Full Rights

This paper is from the SANS Software Security site. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Defending Web Applications Security Essentials (DEV522)"
at http://software-security.sans.orghttp://software-security.sans.org/events/

http://software-security.sans.org
http://software-security.sans.org
http://software-security.sans.orghttp://software-security.sans.org/events/

Comparing Software Development Life Cycles

Jim Hurst

Comparing Software Development Life Cycles

Introduction

This paper compares several different models of the software development life
cycle (SDLC). The SDLC is a structure imposed on the process of developing
software, from the scoping of requirements through analysis, design,
implementation, and maintenance.

Developing a piece of software is an interesting problem. After all, software is
nothing more than bits: information in its purest form. But it also represents
human ingenuity, effort, experience, and yes, fallibility. Building good software is
difficult, and there is no single best approach. This paper contrasts several of the
models used to manage the software development life cycle (SDLC). The SDLC
is also sometimes defined as the Systems Development Life Cycle, which is a
development process defined by the United States Department of Justice. This
paper addresses the first definition.

All the development models examined here can provide excellent results. It is
important to remember that these models all solve the same problem and,
therefore, must address the same activities and steps. These steps are planning
and requirements definition, architecture and design, implementation (where the
code is actually written), testing (also known as validation), and deployment.

Software development is a risky proposition. Many projects fail, at great expense.
The development methodologies described here represent ways to manage that
risk. This paper briefly examines the top-down and bottom-up design
philosophies before reviewing the waterfall model, iterative development, spiral
model, and agile family, which includes extreme programming.

Top-Down and Bottom-Up Design

Top-down and bottom-up design represent two contrasting approaches for
designing a large system. The top-down approach requires a complete design
view of the system before any actual coding can begin. It takes the big-picture
view of the system and breaks the problem apart into many subsystems that
require more design detail. The overall perspective of the project is monolithic:
There is one design, and all modules are small parts of it. The top-down style of
program design is traditionally associated with procedural languages.

The bottom-up approach, in contrast, emphasizes assembling the big picture by
completing many small pieces that work together. These components are then
integrated into the larger system. Coding of individual modules, and their testing,

commences before the entire design is complete. Proponents of the bottom-up
approach argue that this produces reusable code that saves time later in the
process. The bottom-up style of program design is traditionally associated with
object-oriented languages such as C++ and Java.

In practice, some blend of top-down and bottom-up is a common compromise:
Project managers and architects work on the overall design even as
development teams begin building modules and tools. This approach is
sometimes called hybrid design or hybrid development.

The Waterfall Model

The waterfall model is one of the oldest, and perhaps the best-known, software
development method. It presents development as a sequential process,
proceeding downhill through the phases in the sequence. W. W. Royce first
explained the waterfall model in 1970, but he was criticizing the approach at the
time, calling it risky and an invitation to failure. The waterfall model is considered
one of the most direct approaches, with short development times and minimal
costs. However, it does presume an unvarying target: The original specifications
cannot change.

In the waterfall model, when a phase is completed, the phase is closed and
cannot be revisited. This limitation has lead to widespread criticism of this
approach. The software development process involves discovery, and the
different phases of development often overlap. Critics maintain that the waterfall
model limits options to correct mistakes: if a limitation of the requirements is
discovered during the design phase, it is too late to fix it.

Several variations of the waterfall model address these criticisms by allowing
some degree of feedback or overlap. These variants begin to blur the distinction
between the waterfall model and the iterative processes.

Iterative Processes

When Royce explained the waterfall model in 1970, he was actually writing in
defense of the iterative process. The iterative model proceeds by using the
lessons learned from each phase to modify the results of the previous phase.
Iterative development is sometimes referred to as incremental development.

An iterative process begins with a simple implementation of the project
requirements. Each iteration adds more functionality until the full design is
realized. The lessons learned during each incremental stage of development are
applied to refining the design. Learning comes from the development process
and from experience using the incomplete system, where possible.

Several iterations might be required before the project is complete. Like the
waterfall model, the iterative process begins with a requirements phase followed
by a design phase and an implementation phase. After this first round of
implementation, an evaluation phase is initiated to evaluate the successes and
failures of the work completed. User feedback, performance issues, coding
difficulties, unclear or inadequate requirements, and program analysis tools are
all used to set the objectives for the next round of requirements, design, and
implementation. After these phases have been completed for a second time,
another round of evaluation begins. This process repeats until the project is
completed.

This approach, of building corrections, design changes, and discoveries into the
process, more accurately reflects how most commercial software is developed.
Designers miss requirements and make mistakes. Customers often have only a
vague idea of what they require. Developers frequently find that initial designs do
not adequately reflect the hardware, complexity of the problem, or needs of the
users. By making allowance for modifications, iterative processes build flexibility
and responsiveness into the process.

Several development models are considered iterative. Discussed here are the
spiral model and the agile methods, including extreme programming.

The Spiral Model

Barry Boehm first proposed the spiral model in 1988. Although the iterative
model was used well before this, Boehm was the first to explain why iteration is
important to producing software that meets customer expectations. Development
proceeds through the stages: requirements, design, implementation, and testing.
When testing at the end of a cycle is completed, the next step is the planning
phase of a new cycle that adds additional features and components. Each cycle
of the spiral involves stepping through all the phases. The spiral model tries to
combine the advantages of the top-down and bottom-up approaches and is often
used in larger projects. For smaller projects, the agile methods are often
preferred.

The Agile Model

The agile development processes were developed during the 1990s as a
reaction to the “heavyweight” models being used at that time. Agile methods
represent a family of development methods, rather than a single approach. They
emphasize communication between all project members and encourage locating
the entire team in one location. “Customers” may be actual customers or may be
product managers or business analysts. In all cases, customer participation is
welcome and encouraged.

The agile models attempt to minimize project risk by dividing the project into
short iterations (called timeboxes) that normally last between a week and a
month. Each timebox represents a project in miniature, with planning,
requirements, design, coding, testing, and documentation. The goal of an agile
project is to release software at the end of each iteration, even if this release is
not a complete product. Project priorities are re-evaluated at the end of each
timebox.

Agile methods aim to satisfy customers with rapid, continuous deliveries of useful
software, delivered in weeks rather than months. The principal measure of
progress is working software. Close, face-to-face communication is expected
between developers and business people. The project should adapt to changing
circumstances, and even late changes in the requirements are welcome.

Extreme Programming

The best known of the agile development methods is extreme programming, also
known as XP. Extreme programming prescribes a set of day-to-day practices for
developers and managers. Fans of XP say that these practices represent
traditional software engineering taken to an extreme degree, and that this
produces high-quality results more attuned to customer needs.

One of the key goals of XP is to reduce the cost of changes during the
development process: XP sees requirements changes as an inevitable, normal,
and even desirable part of the process. The development team should adapt to
changes gracefully, without putting schedules or projects at risk.

Extreme programming recognizes a set of five values as being critical to
development success: communication, simplicity, feedback, courage, and
respect. Communication refers to communicating the requirements to the
developers, spreading project knowledge rapidly among team members, and
sharing results and ideas with customers in many interactions. XP recommends
starting with the simplest solution and rewriting to more complex solutions only
as required. This focus of coding and designing only for today’s needs is one of
the key differences between XP and other methods. Proponents argue that, while
this entails the overhead of rewriting, it is made up for by the advantage of only
developing the pieces required by the final system. Feedback refers to input from
the system, customers, and team. Feedback from the system comes from testing
and validation efforts. Feedback from the customers requires customer
involvement at a daily level. The development team must then respond to the
new requirements and issues.

Courage seems an odd value for a development methodology. It requires team
members to develop code for today, not tomorrow. It requires courage to rewrite
(or refactor) the code as necessary, and courage to know when to throw away
code that no longer meets the requirements. The respect value requires that

team members respect each other and, thus, commit to not making changes that
invalidate completed work, and that they respect their work, maintaining a
commitment to quality and the best design possible.

Rapid Prototyping

Rapid prototyping is less a development methodology than a software
engineering tool. Rapid prototyping incorporates three steps: requirements,
prototyping, and user evaluation. The goal is to quickly assemble a mock-up of
the system for evaluation. This usually means quickly assembling a user
interface, using dummy data, and getting customer evaluations.

Rapid prototyping can be useful in gathering requirements about the user
experience. For small projects, prototype code can be incorporated into the final
product. In larger projects, the prototype is looked upon as part of the
requirements and evaluation steps, and the code is generally discarded.

Summary

This paper has reviewed different approaches in design and software
development used to manage risk. Top-down design emphasizes a complete
design, often composed of many subsystems, before any coding begins. Bottom-
up design, instead, requires early coding and testing of modules.

Several software development methods were discussed. All these methods must
include phases of planning and requirements, design and architecture,
implementation, testing, and deployment. The waterfall model is direct and cost
effective, but it is inflexible and does not gracefully handle changes to
requirements after design has begun. It proceeds through the phases a single
time, with no going back to previous phases. The iterative processes, in contrast,
expect to revisit each phase, to incorporate changes and lessons learned. The
spiral model uses several cycles that begin with requirements and design and
end with evaluation of implementation during the cycles. The agile family of
methods uses short iterations, or timeboxes, that are each mini-development
projects. They emphasize team communication and flexibility in requirements.
The best-known agile method is extreme programming, which prescribes
practices meant to encourage the values of communication, simplicity, feedback,
courage, and respect. Rapid prototyping is a technique of quickly assembling a
user interface for evaluation.

References

Project Lifecycle Models: How They Differ and When to Use Them. Business
Evolution. http://www.business-esolutions.com/islm.htm

A Spiral Model of Software Development and Enhancement. Barry Boehm.
http://www.sce.carleton.ca/faculty/ajila/4106-
5006/Spiral%20Model%20Boehm.pdf

Last Updated: January 17th, 2019

Upcoming SANS App Sec Training

SANS Las Vegas 2019 Las Vegas, NV Jan 28, 2019 - Feb 02, 2019 Live Event

Community SANS Silver Spring DEV534 @ SID Silver Spring, MD Jan 31, 2019 - Feb 01, 2019 Community SANS

SANS Anaheim 2019 Anaheim, CA Feb 11, 2019 - Feb 16, 2019 Live Event

SANS Zurich February 2019 Zurich, Switzerland Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Riyadh February 2019 Riyadh, Kingdom Of
Saudi Arabia

Feb 23, 2019 - Feb 28, 2019 Live Event

Community SANS Nashville DEV541 Nashville, TN Feb 26, 2019 - Mar 01, 2019 Community SANS

SANS San Francisco Spring 2019 San Francisco, CA Mar 11, 2019 - Mar 16, 2019 Live Event

SANS London March 2019 London, United
Kingdom

Mar 11, 2019 - Mar 16, 2019 Live Event

SANS Munich March 2019 Munich, Germany Mar 18, 2019 - Mar 23, 2019 Live Event

Community SANS Denver DEV540 Denver, CO Mar 25, 2019 - Mar 29, 2019 Community SANS

SANS 2019 Orlando, FL Apr 01, 2019 - Apr 08, 2019 Live Event

Community SANS Chicago DEV540 Chicago, IL Apr 15, 2019 - Apr 19, 2019 Community SANS

Cloud Security Summit & Training 2019 San Jose, CA Apr 29, 2019 - May 06, 2019 Live Event

Community SANS Atlanta DEV540 Atlanta, GA May 06, 2019 - May 10, 2019 Community SANS

SANS Security West 2019 San Diego, CA May 09, 2019 - May 16, 2019 Live Event

Security West 2019 - DEV522: Defending Web Applications
Security Essentials

San Diego, CA May 09, 2019 - May 14, 2019 vLive

Community SANS Austin DEV540 Austin, TX May 20, 2019 - May 24, 2019 Community SANS

Community SANS Vancouver DEV540 Vancouver, BC Jun 10, 2019 - Jun 14, 2019 Community SANS

SANSFIRE 2019 Washington, DC Jun 15, 2019 - Jun 22, 2019 Live Event

SANSFIRE 2019 - DEV540: Secure DevOps and Cloud
Application Security

Washington, DC Jun 17, 2019 - Jun 21, 2019 vLive

SANS Cyber Defence Canberra 2019 Canberra, Australia Jun 24, 2019 - Jul 13, 2019 Live Event

SANS San Francisco Summer 2019 San Francisco, CA Jul 22, 2019 - Jul 27, 2019 Live Event

SANS Boston Summer 2019 Boston, MA Jul 29, 2019 - Aug 03, 2019 Live Event

SANS San Jose 2019 San Jose, CA Aug 12, 2019 - Aug 17, 2019 Live Event

SANS Munich September 2019 Munich, Germany Sep 02, 2019 - Sep 07, 2019 Live Event

SANS Brussels September 2019 Brussels, Belgium Sep 02, 2019 - Sep 07, 2019 Live Event

SANS Network Security 2019 Las Vegas, NV Sep 09, 2019 - Sep 16, 2019 Live Event

SANS Paris September 2019 Paris, France Sep 16, 2019 - Sep 21, 2019 Live Event

SANS London September 2019 London, United
Kingdom

Sep 23, 2019 - Sep 28, 2019 Live Event

SANS OnDemand Online Anytime Self Paced

SANS SelfStudy Books & MP3s Only Anytime Self Paced

http://software-security.sans.orghttp://software-security.sans.org/events/
http://www.sans.org/link.php?id=54385&mid=98
http://www.sans.org/link.php?id=54385&mid=98
http://www.sans.org/link.php?id=57805&mid=98
http://www.sans.org/link.php?id=57805&mid=98
http://www.sans.org/link.php?id=54400&mid=98
http://www.sans.org/link.php?id=54400&mid=98
http://www.sans.org/link.php?id=54935&mid=98
http://www.sans.org/link.php?id=54935&mid=98
http://www.sans.org/link.php?id=55065&mid=98
http://www.sans.org/link.php?id=55065&mid=98
http://www.sans.org/link.php?id=57005&mid=98
http://www.sans.org/link.php?id=57005&mid=98
http://www.sans.org/link.php?id=54445&mid=98
http://www.sans.org/link.php?id=54445&mid=98
http://www.sans.org/link.php?id=55020&mid=98
http://www.sans.org/link.php?id=55020&mid=98
http://www.sans.org/link.php?id=55075&mid=98
http://www.sans.org/link.php?id=55075&mid=98
http://www.sans.org/link.php?id=55060&mid=98
http://www.sans.org/link.php?id=55060&mid=98
http://www.sans.org/link.php?id=54470&mid=98
http://www.sans.org/link.php?id=54470&mid=98
http://www.sans.org/link.php?id=57225&mid=98
http://www.sans.org/link.php?id=57225&mid=98
http://www.sans.org/link.php?id=55350&mid=98
http://www.sans.org/link.php?id=55350&mid=98
http://www.sans.org/link.php?id=57760&mid=98
http://www.sans.org/link.php?id=57760&mid=98
http://www.sans.org/link.php?id=54675&mid=98
http://www.sans.org/link.php?id=54675&mid=98
http://www.sans.org/link.php?id=56590&mid=98
http://www.sans.org/link.php?id=56590&mid=98
http://www.sans.org/link.php?id=57695&mid=98
http://www.sans.org/link.php?id=57695&mid=98
http://www.sans.org/link.php?id=57725&mid=98
http://www.sans.org/link.php?id=57725&mid=98
http://www.sans.org/link.php?id=54680&mid=98
http://www.sans.org/link.php?id=54680&mid=98
http://www.sans.org/link.php?id=56945&mid=98
http://www.sans.org/link.php?id=56945&mid=98
http://www.sans.org/link.php?id=54570&mid=98
http://www.sans.org/link.php?id=54570&mid=98
http://www.sans.org/link.php?id=56405&mid=98
http://www.sans.org/link.php?id=56405&mid=98
http://www.sans.org/link.php?id=54930&mid=98
http://www.sans.org/link.php?id=54930&mid=98
http://www.sans.org/link.php?id=57350&mid=98
http://www.sans.org/link.php?id=57350&mid=98
http://www.sans.org/link.php?id=57520&mid=98
http://www.sans.org/link.php?id=57520&mid=98
http://www.sans.org/link.php?id=57050&mid=98
http://www.sans.org/link.php?id=57050&mid=98
http://www.sans.org/link.php?id=54685&mid=98
http://www.sans.org/link.php?id=54685&mid=98
http://www.sans.org/link.php?id=57100&mid=98
http://www.sans.org/link.php?id=57100&mid=98
http://www.sans.org/link.php?id=57155&mid=98
http://www.sans.org/link.php?id=57155&mid=98
http://www.sans.org/link.php?id=1032&mid=98
http://www.sans.org/link.php?id=1032&mid=98
http://www.sans.org/link.php?id=208&mid=98
http://www.sans.org/link.php?id=208&mid=98

